High-Growth Technology Business Forum

Francisco Castro, Ph.D. Chief IP Counsel, IonQ

Copyright IonQ - 2022

Company History

25-Year History of Innovation and Leadership

		2004 Kim proposes chip-based ion trap QC architecture (Bell Labs)		rap Kim i qubi (Duk	2012 Kim integrates optics with ion qubits on chip (Duke)	
Christopher Monroe Co-founder & Chief Scientist	1995 Monroe and Winela demonstrate first kr gate (NIST)	nd nown quantum	2007 Monroe demonstra quantum network		: known	2016 Monroe QC bests IBM on all algorithms (UMD)
		2005 Monroe chip (Mic	traps ions o higan)	on a monolithic	2013 Kim realizes > operations or (Duke)	999.9% fidelity n stable qubits
Jungsang Kim Co-founder & CTO Duke Bell Laboratories	200 Moni mode	2000 Monroe and Wineland dev modern native ion trap gat		2011 Kim and Monroe invent photonically-networked modular quantum computer (Duke/UMD)		

Rapid Evolution of IonQ

2019 IonQ raises ~\$62M in Series B IonQ announces partnership with Amazon and Microsoft to bring hardware to their cloud services

2015 IonQ is born with \$2M seed

2018 IonQ Systems 1 and 2 execute first algorithms

2016

Monroe and Kim's labs at UMD and Duke surpass \$100M in combined total grants to date

2020

Monroe and team announce logical qubit with only 13 physical qubits (UMD)

2021

company

IonQ becomes a public

IonQ announces 32 qubit quantum computer

Quantum Computing

Classical Bits vs. Quantum Bits (Qubits)

Quantum Phenomena

Quantum Superposition Quantum states can be added together

qubit:
$$|\psi\rangle = a|0\rangle + b|1\rangle$$

Quantum Entanglement

Quantum state of each particle in a group is not independent even when separated by a large distance

"spooky action-at-a-distance"

Technology

Qubit Technology - Natural Qubits

Trapped lons IonQ, Quantinuum, AQT, Oxford Ionics

Neutral Atoms Atom Computing, ColdQuanta, QuEra

Photonics Psiquantum, Xanadu

Qubit Technology - Manufactured Qubits

Superconducting Loops Google, IBM, QCI, Rigetti

Silicon Quantum Dots HRL, Intel, SQC

Topological Qubits Microsoft

Diamond Vacancies

Quantum Diamond Technologies

IonQ Approach – Trapped Ions

lon Trap

Quantum Module

IonQ Systems

Licensing and IP Portfolio

University Licensing

Initial IP license from universities

Favorable terms to allow company to succeed

Option agreements from universities
 Ability to add to assets to IP license over time

IP Portfolio Development

International portfolio that includes more than 200 owned or licensed issued patents and pending or allowed patent applications

- Licensed growth through university option
 agreements
- Organic growth through internal R&D in hardware, software, system integration, and algorithms

Business of Quantum Computing

Business Models

Quantum-as-a-Service (QaaS) Access to quantum computing systems through cloud

providers or private services

Consulting Services/Software Development

Algorithm development/solutions for different industries

Dedicated Systems

Hosted or on-premise quantum computing systems

Quantum Computing Market

Maximize Market Research (MMR), Quantum Computing Market: Global Industry Analysis and Outlook, Updated November 2021.

